
2N5551CSM

MECHANICAL DATA Dimensions in mm (inches) SWITCHING TRANSISTOR IN A HERMETICALLY SEALED CERAMIC SURFACE MOUNT PACKAGE FOR HIGH RELIABILITY APPLICATIONS

SOT23 CERAMIC (LCC1 PACKAGE)

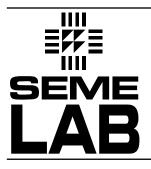
Underside View

PAD 1 – Base PAD 2 – Emitter PAD 3 – Collector

FEATURES

- SILICON PLANAR EPITAXIAL NPN TRANSISTOR
- HERMETIC CERAMIC SURFACE MOUNT PACKAGE (SOT23 COMPATIBLE)
- CECC SCREENING OPTIONS

HIGH VOLTAGE NPN


APPLICATIONS:

Hermetically sealed surface mount 2N5551 for high reliability / space applications requiring small size and low weight devices.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

V _{CBO}	Collector – Base Voltage	180V			
V _{CEO}	Collector – Emitter Voltage	160V			
V _{EBO}	Emitter – Base Voltage	6V			
I _C	Collector Current	600mA			
P _D	Total Device Dissipation @ T _A =25°C	350mW			
	Derate >25°C	0.2°C/mW			
T_{STG} , T_{J}	Operating and Storage Temperature Range	−55 to +150°C			

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)CEO*}	Collector – Emitter Breakdown Voltage	I _C = 1.0mA	I _B = 0mA	160			V
V _{(BR)CBO}	Collector – Base Breakdown Voltage	I _C = 100μA	I _E = 0mA	180			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	I _E = 10μΑ	$I_{\rm C} = 0 {\rm mA}$	6			V
I _{CBO}	Collector – Base Cut-off Current	V _{CB} = 120V	I _E = 0			50	nA
			$T_{A} = +100^{\circ}C$			50	μΑ
I _{EBO}	Emitter – Base Cut-off Current	$V_{EB} = 4V$	$I_{\rm C} = 0$			50	nA
V _{CE(sat)}	Collector – Emitter Saturation Voltage	I _C = 10mA	I _B = 1.0mA			0.15	V
		I _C = 50mA	I _B = 5mA			0.20	
V _{BE(sat)}	Base – Emitter Saturation Voltage	I _C = 10mA	I _B = 1.0mA			1.0	V
		I _C = 50mA	I _B = 5mA			1.0	
h _{FE*}	Current Gain	I _C = 1.0mA	$V_{CE} = 5V$	80			_
		I _C = 10mA	$V_{CE} = 5V$	80		250	
		I _C = 50mA	$V_{CE} = 5V$	30			
fT	Current Gain Bandwidth Product	I _C = 10mA	$V_{CE} = 10V$	100		300	_
		f = 100MHz					
C _{obo}	Output Capacitance	$V_{CB} = 10V$	I _E = 0		6		
		f = 1.0 MHz				0	- pF
C _{ib}	Input Capacitance	V _{EB} = 0.5V	$I_{\rm C} = 0$			60	
		f = 1.0 MHz					
NF	Noise Figure	I _C = 250μA	$V_{CE} = 5V$			8	dB
		R _S =1.0 k	f = 1.0 KHz				
h _{FE*}	Current Gain	V _{CE} = 10V	I _C =1.0 mA	50		200	_
		f = 1.0 KHz					

* Pulse Test: $t_p \leq 300 \mu s, \, \delta \leq 2\%.$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.